

Figures and figure supplements

Cylicins are a structural component of the sperm calyx being indispensable for male fertility in mice and human

Simon Schneider and Andjela Kovacevic et al.

Figure 1. Loss of Cylc1 or Cylc2 results in impaired male fertility. (A) Schematic representation of the Cylc1 and Cylc2 gene structure and targeting strategy for CRISPR/Cas9-mediated generation of Cylc1- and Cylc2-deficient alleles. Targeting sites of guide RNAs are depicted by red arrows. Genotyping primer binding sites are depicted by black arrows. (B) Representative genotyping PCR of Cylc1- and Cylc2-deficient mice. N=3. (C) Fertility analysis of Cylicin-deficient mice visualized by mean litter size and pregnancy rate (%) in comparison to wildtype (WT) matings. Black dots represent mean values obtained for each male included in fertility testing. Columns represent mean values ± standard deviation (SD). Total number of offspring per total number of pregnancies as well as total number of pregnancies per total number of plugs are depicted above each bar. (D) Expression of Cylc1 and Cylc2 in testicular tissue of WT, Cylc1-^{/y}, Cylc2^{+/-}, Cylc2^{-/-}, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{-/-} mice analyzed by quantitative reverse transcription-polymerase chain reaction (gRT-PCR). Biological replicate of 3 was used. (E) Immunofluorescent staining of testicular tissue and cauda epididymal sperm from WT, Cylc1-¹, Cylc2+⁻, Cylc2+⁻, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{-/-} males against CYLC1 and CYLC2. Cell nuclei were counterstained with DAPI. Staining was performed on three animals from each genotype. Scale bar: 5 µm. (F) Schematic illustration of CYLC localization during spermiogenesis. CYLC localization (green) is shown for round and elongating spermatids as well as mature sperm. (G) Representative immunoblot against CYLC1 and CYLC2 on cytoskeletal protein fractions from WT, $Cylc1^{-/y}$, $Cylc2^{+/-}$, and $Cylc2^{-/-}$ testes. α -Tubulin was used as load control.

Figure 1—figure supplement 1. Amino acid sequence comparison of CYLC1 and CYLC2 in *Caenorhabditis elegans* and *Mus musculus* to *Homo sapiens*. KKD/E motifs are highlighted in blue and repeating units are marked by red brackets.

Figure 1—figure supplement 2. Immunohistochemical staining against CYLC1 and CYLC2 in tissue sections of testis, brain, thymus, and spleen. Scale bar: 100 µm.

Figure 1—figure supplement 3. Immunofluorescence staining against the acrosomal matrix marker protein SP56 (green) and CYLC1 or CYLC2 (red) in round and elongating spermatids. Nuclei were stained with DAPI. Scale bar: 5 µm.

Figure 1—figure supplement 4. Immunofluorescence staining of CYLC1 and CYLC2 in elongating spermatids of wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{+/-}, mice. Scale bar: 5 µm.

Figure 1—figure supplement 5. Proteome abundances.

1	101	1	201	3	01	40	01	50	1	601	64
equence Modificati	tion List										
	1	11	21	31	41	51	61	71	81	91	
0A1B0GR13	1 MSLSKLDSEK	LTIEDVQTSS	SSCRREINTT	TYDDYILSIQ	TSEKONOEHF	VLTFPKTPMP	DKKKRSGPSE	LEVAVPIQVK	RKIEKDQKPT	HVWINQFLRD	
0A1B0GR13	101 IFLKSSFSRP	FITQAPFKYL	YNPQNHYTMA	ESRKSKNDER	RKTLKIKFRG	KISSCVVNLE	PMRTITNGEP	EILGNTEKNP	SKSSHKIKLP	KTSNSTSETN	
OA1BOGR13	201 LEYNNSKKTL	EMS LRNGNKN	SMNFVLKGNA	ATCCKDNPNT	DSKKSVEEFS	DDISECINSS	NMDLMLRLNE	FRAEFTDLDV	WSTNCSONNA	KKPLKTGGKK	
0A1B0GR13	301 ERDSDIDSGG	SKDAKKEGKK	KGKRESRKKR	NTESSDAESG	DSKDGKKKSK	HDKKNEIKKK	KDTDSTGSGS	GASMVSKKGK	TEKKSTGKKS	TGSTGSESVD	
A0A1B0GR13	401 SKSTNKVKKD	VKKGVMKKAV	STDSESDASS	KKSKKDEKKE	NKGRKKKPIK	DTESTDADSE	SEGDSTGKKN	EKKDKKITKK	GEKKDAKKNT	ASSESESDLG	
AOA1BOGR13	501 <mark>VNK</mark> KKTKIKE	IVSFSDSTSD	SYSKAGRRKN	VRRSDSESED	SSGFRVLKST	DDSEASSTDS	KTGMPGMRRG	FRSLSKKTTF	NERGKRSVTG	RIPSSRERLP	
			REDEDINARYA	PLOCVEWTHK	LL						
0A1B0GR13	601 FPPCEPFRAS	PKPVHVCKCK	ESPSPRARIA	1 DI OTDRILLIN							
0A1B0GR13	601 FPPCEPFRAS	PKPVHVCKCK	ESPSPKARIA	1010120110							
A0A1B0GR13	601 FPPCEPFRAS	PKPVHVCKCK	LSPSPKAKIA	10101041111							
.0A1B0CR13	601 FPPCEPFRAS	PKPVHVCKCK	LSPSPARIA					504			
0A1B0GR13	601 FPPCEPFRAS	PRPVHVCKCK 20	1	301		401		501		601	6
0A1B0GR13	601 FPPCEPFRAS	PRPVHVCKCK 20	1	301		401	_	501		601	6
0A1B0GR13	601 FPPCEPFRAS	20	1	301		401		501		601	6
0A1B0GR13	601 FPPCEPFRAS	20	1	301		401		501		601	6
0A1B0GR13	601 FPPCEPFRAS	20	1	301		401		501		601	6
0A1B0GR13	601 FPPCEPFRAS	20 11	1 21	301	41	401	61	501	81	601	6
0A1B0GR13	601 FPPCEPFRAS	20 20 11 YGAYDNYIPV	1 21 SELSKKSWNQ	301 31 QYFSLAFPKP	41 PRPCKKRRSL	401 51 PSQLQNNTAP	61 VIDEEKLGVH	501 71 RPPLWMHRSL	81 MRISERPSVY	601 91 LAARKGLIPK	6
1 equence Modificat NOA571BEE2 NOA571BEE2	601 FPPCEPFRAS 101 tion List 1 MSIPRFLKVT 101 PLHFGKGESK	20 20 11 YGAYDNYIPV SVGTHKSLAS	1 21 SELSKKSWNQ EKTKKEVKMK	301 31 QYFSLAFPKP KDGFEAKEKT	41 PRPCKKRRSL ALKTDKECSP	401 51 PSOLONNTAP KPAKKNIPRD	61 VIDEEKLGVH SQKDKCRVSS	501 71 RPPLWMHRSL DSEGEKAGVK	81 MRISERPSVY KGSKKVKNTP	601 91 LAARKGLIPK KCKDSASESE	6
1 equence Modificat 00A571BEE2 00A571BEE2	601 FPPCEPFRAS	20 20 11 YGAYDNYIPV SVGTHKSLAS KVTKKGSTGK	1 21 SELSKKSWNO EKTKKEVKMK DSTSESGGEK	301 31 QYFSLAFPKP KDGFEAKEKT AGSKKEAKVT	41 PRPGKKRRSL ALKTDKEGSP KKGSTGKDSA	401 51 PSQLQNNTAP KPAKKNIPRD SESGCEKAGS	61 VIDEEKLGVH SQKDKCRVSS KKEAKVTKKG	501 71 RPPLMMHRSL DSEGEKAGVK STGKDSASES	81 MRISERPSVY KGSKKVKNTP GGEKAGSKKE	601 91 LAARKGLIPK KGKDSASESE AKVTKKGSTG	6
1 equence Modificat A0A571BEE2 A0A571BEE2 A0A571BEE2 A0A571BEE2	101 101 tion List 1 MSIPRFLKVT 101 PLHFGKGESK 201 GEKAGSKKEA 301 KDSASESGGE	20 20 11 YGAYDNYIPV SVGTHKSLAS KVTKKGSTGK KAGSKKEAKV	1 21 SELSKKSWNQ EKTKKEVKMK DSTSESGGEK TKKGSKSKDS	301 31 QYFSLAFPKP KDGFEAKEKT AGSKKEARVT ASESCGEKAG	41 PRPGKKRRSL ALKTDKEGSP KKGSTGKDSA SKKEAKVTKK	401 51 PSOLONNTAP KPAKKNI PRD SESGCEKAGS GSTGKDSASE	61 VIDEEKLGVH SQKDKGRVSS KKEAKVTKKG SGGEKAGSKK	501 71 RPPLWMHRSL DSEGEKAGVK STGKDSASES EAKATKKGSK	81 MRISERPSVY KCSKKVKNTP GCEKAGSKKE SKDSASESCG	601 91 LAARKGLIPK KCKDSASESE AKVTKKGSTG EKAGSKKEAK	61
0A1B0GR13 1 equence Modificat 0A571BEE2 0A571BEE2 0A571BEE2 0A571BEE2	601 FPPCEPFRAS	20 20 11 YGAYDNYIPV SVGTHKSLAS KVTKKGSTGK KAGSKKEAKV SASESGGEKA	1 21 SELSKKSWNQ EKTKKEVKMK DSTSESGGEK TKKGSKSKDS GSKKEAKATK	301 31 QYFSLAFPKP KDGFEAKEKT AGSKKEAKVT ASESGGEKAG KGSKDKTSIS	41 PRPGKKRRSL ALKTDKEGSP KKGSTGKDSA SKKEAKVTKK ESGSEKAGSK	401 51 PSQLQNNTAP KPAKKNI PRD SESGGEKAGS GSTGKDSASE KEAKTTKKGS	61 VIDEEKLGVH SQKDKGRVSS KKEAKVTKKG SGGEKAGSKK KDKVSATESG	501 71 RPPLMMHRSL DSEGEKAGVK STGKDSASES EAKATKKGSK GEKAGSKKEA	81 MRISERPSVY KCSKKVKNTP GCEKAGSKKE SKDSASESGG KATKKGSKDK	601 91 LAARKGLIPK KCKDSASESE AKVTKKGSTG EKAGSKKEAK VSGTESGGEK	6
quence Modificat Quence Modificat QA571BEE2 QA571BEE2 QA571BEE2 QA571BEE2 QA571BEE2 QA571BEE2 QA571BEE2	601 FPPCEPFRAS	20 20 11 YGAYDNYIPV SVGTHKSLAS KVTKKGSTGK KAGSKKEAKV SASESGGEKA KKESKDKVSA	1 21 SELSKKSWNQ EKTKKEVKMK DSTSESGGEK TKKGSKSKDS GSKKEAKATK TESGGEKAGS	301 31 QYFSLAFPKP KDGFEAKEKT AGSKKEAKVT ASESGGEKAG KGSKDKTSIS KKEAKDDKKD	41 PRPCKKRRSL ALKTDKEGSP KKGSTGKDSA SKKEAKVTKK ESGSEKAGSK ATSSQETLLS	401 51 PSOLQNNTAP KPAKKNI PRD SESGCEKAGS GSTGKDSASE KEAKTTKKGS TAADKOGKKK	61 VIDEEKLGVH SQKDKGRVSS KKEAKVTKKG SGGEKAGSKK KDKVSATESG EEKPVKQSSK	501 71 RPPLWMHRSL DSEGEKAGVK STGKDSASES EAKATKKGSK GEKAGSKKEA SKDTVKDSAS	81 MRISERPSVY KCSKKVKNTP GCEKAGSKKE SKDSASESGG KATKKGSKDK EKCDEKKEDK	601 91 LAARKGLIPK KCKDSASESE AKVTKKGSTG EKAGSKKEAK VSGTESGGEK KEGKKEKKKK	6
Quence Modificat 0A571BEE2 0A571BEE2 0A571BEE2 0A571BEE2 0A571BEE2 0A571BEE2 0A571BEE2	601 FPPCEPFRAS 101 101 tion List 1 MSIPRFLKVT 101 PLHFGKGESK 201 GEKAGSKKEA 301 KDSASESGGE 401 ATKKGSKSKD 501 AGSKKEAKTT 601 DGEGKEGGKK	20 20 11 YGAYDNYIPV SVGTHKSLAS KVTKKGSTGK KAGSKKEAKV SASESGGEKA KKESKDKVSA EKKDKKDKKD	1 21 SELSKKSWNQ EKTKKEVKMK DSTSESGGEK TKKGSKSKDS GSKKEAKATK TESGGEKAGS KKDKKDKMK	301 31 QYFSLAFPKP KDGFEAKEKT AGSKKEAKVT ASESCGEKAG KGSKDKTSIS KKEAKDDKKD	41 PRPGKKRRSL ALKTDKEGSP KKGSTGKDSA SKKEAKVTKK ESGSEKAGSK ATSSQETLLS KKDKKDKNK	401 51 PSQLQNNTAP KPAKKNIPRD SESGGEKAGS GSTGKDSASE KEAKTTKKGS TAADKDGKKK	61 VIDEEKLGVH SQKDKGRVSS KKEAKVTKKG SGGEKAGSKK KDKVSATESG EEKPVRQSSK DKKAK	501 71 RPPLWMHRSL DSEGEKAGVK STGKDSASES EAKATKKGSK GEKAGSKKEA SKOTVKDSAS	81 MRISERPSVY KGSKKVKNTP GGEKAGSKKE SKDSASESGG KATKKGSKDK EKGDEKKEDK	601 91 LAARKGLIPK KGKDSASESE AKVTKKGSTG EKAGSKKEAK VSGTESGGEK KEGKKEKKKK	6

Figure 1—figure supplement 6. Proteome clustering.

Figure 2—figure supplement 1. Hematoxylin and eosin (HE)-stained testicular tissue sections of wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{+/-} mice. Scale bar: 100 μm.

Figure 2—figure supplement 2 continued on next page

Figure 2—figure supplement 2 continued

Figure 2—figure supplement 2. Eosin-Nigrosin staining of epididymal sperm samples from wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{-/-} mice. Scale bar: 10 μm.

Figure 2—figure supplement 3. Nuclei of wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{-/-}, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{-/-} sperm stained with DAPI. Scale bar: 5 µm. Elongation and circularity of nuclei from WT, Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{-/-}, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{+/-} sperm. The minimum detection area was set to 1.000 pixels, while the maximum detection area was 7.000 pixels.

Figure 2—figure supplement 4. Co-staining against CYLC1/CYLC2 (red) and CCIN (green) in epididymal sperm cells of wildtype (WT) mouse. Nuclei were counterstained with DAPI. Scale bar: 2 µm.

Figure 3. *Cylc2^{-/-}* sperm cells have altered flagellar beat. (**A**) Transmission electron microscopy (TEM) micrographs of wildtype (WT), *Cylc1^{-/y}* and *Cylc2^{-/-}* epididymal sperm. Acrosome appears detached from the nucleus in *Cylc2^{-/-}* sperm (green arrowheads), while the calyx is missing entirely (red arrowheads). The head-tail connecting piece shifted from the basal plate is shown by white arrowheads causing the looping of the flagellum and formation of a cytoplasmatic sac. *Cylc1^{-/y}* sperm appears comparable to WT. Scale bar: 1 µm. (**B**) Motility of the epididymal sperm of WT, *Cylc1^{-/y}*, *Cylc2^{+/-}*, *Cylc2^{-/-}*, *cylc2^{+/-}*, and *Cylc2^{-/-}* males activated in TYH medium. (**C**) Full and half-beat cycle plots of the flagellar beat are shown for WT and *Cylc2^{-/-}* spermatozoa. Half-beat cycle shows the stiffness of the midpiece (upper arrow) and high oscillations (lower arrow) in *Cylc2^{-/-}* sperm in one direction of the beat.

eLife Research article

Figure 3—figure supplement 1. Transmission electron microscopy (TEM) micrographs of wildtype (WT) and Cylc2^{1/-} sperm and axonemes.

Figure 3—figure supplement 2. SpermQ analysis of the flagellar beat of wildtype (WT) (green) and *Cylc2^{-/-}* (red) sperm. Average curvature of the flagellum and the arc length are shown.

Figure 4. Cylicins are required for acrosome attachment to the nuclear envelope. (**A**) Peanut agglutinin (PNA)-fluorescein isothiocyanite (FITC) lectin immunofluorescence staining of the acrosome in testicular tissue of wildtype (WT), *Cylc1^{-1/y}*, *Cylc2^{+/-}*, *Cylc1^{-1/y}*, *Cylc2^{+/-}*, *Cylc2^{+/-}*, and *Cylc1^{-1/y}*, *Cylc2^{-/-}* mice (green). Golgi phase of acrosome biogenesis at round spermatid stage (I–IV) is visible in the left panel. Middle panel shows cap phases on round spermatids (stage V–VIII). In the right panel acrosomal phase is shown (stage IX–XI). Nuclei were counterstained with DAPI. Staining was performed on three animals from each genotype. Scale bar: 10 µm. Insets show representative single spermatids at higher magnification (scale bar: 2 µm). (**B**) Periodic acid Schiff (PAS) staining of testicular sections from WT, *Cylc1^{-1/y}*, *Cylc2^{+/-}*, *Cylc2^{-/-}*, *Cylc1^{-1/y}*, *Cylc2^{+/-}*, and *Cylc1^{-1/y}*, *Cylc2^{-/-}* mice. Representative spermatids at different steps of spermiogenesis are shown. Scale bar: 3 µm. (**C**) Transmission electron microscopy (TEM) micrographs of testicular tissues of WT and *Cylc2^{-/-}* mice. Single spermatids from step 6 to step 16 are shown. nu: nucleus; av: acrosomal vesicle; pr: perinuclear ring; m: manchette microtubules; cy: cytoplasm; green

Figure 4 continued on next page

Figure 4 continued

arrowheads: developing acrosome; red arrowheads: manchette; white arrowhead: cytoplasm; yellow arrowhead: remaining microtubules in mature sperm. Scale bar: 1 µm.

eLife Research article

Figure 4—figure supplement 1. Peanut agglutinin (PNA)-lectin immunofluorescence staining of wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2

Figure 4—figure supplement 2. Periodic acid Schiff (PAS)-stained testicular tissue sections of wildtype (WT), Cylc1^{-/y}, Cylc2^{+/-}, Cylc2^{+/-}, Cylc1^{-/y} Cylc2^{+/-}, and Cylc1^{-/y} Cylc2^{-/-} mice. Scale bar: 20 µm.

Figure 4—figure supplement 3. Transmission electron microscopy (TEM) micrographs of degrading damaged spermatids in testicular sections of *Cylc2^{/-}* mice. Scale bar: 5 µm.

Figure 5. Cylc2 deficiency causes delay in manchette removal. (**A**) Immunofluorescence staining of α -tubulin to visualize manchette structure in squash testis samples of wildtype (WT), *Cylc1^{-/y}*, *Cylc2^{+/-}*, *Cylc2^{+/-}*, *Cylc2^{-/-}*, *Cylc2^{-*}

Figure 5—figure supplement 1. Immunofluorescence staining of α -tubulin in wildtype (WT), $Cylc1^{-/y}$, $Cylc2^{+/-}$, $Cylc2^{-/-}$, $Cylc1^{-/y}$ $Cylc2^{+/-}$, and $Cylc1^{-/y}$ $Cylc2^{-/-}$ squash testis samples. Spermatids at steps 8–9 are shown. Scale bar: 10 µm.

Figure 6. Species phylogeny with branch length representing number of nucleotide substitutions per codon with schematic representation of (**A**) CYLC1 and (**B**) CYLC2 amino acid alignment used in the PAML CodeML analysis. Alignments were stripped of columns with gaps in more than 80% of species. Evolutionary rate (ω) obtained by CodeML models M0 is shown for the whole alignment. The graph on top shows the evolutionary rate (ω) per codon sites across the whole tree (CodeML model M2a). Significantly positively selected sites are marked by asterisks. Sites with a probability of higher than 0.95 to belonging to the conserved or positively selected site class are marked in green and red respectively below the graph.

Cell Biology | Developmental Biology

Figure 7—figure supplement 1. Variants in CYLC1 and CYLC2 identified in subject M2270 and their localization on the DNA and protein level. (A) Localization of the CYLC1 variant found in M2270. The variant affects exon 4 and an intolerant part of the C-terminal region of CYLC1 according to metadome 41. (B) CYLC2 variant localization. The missense variant in CYLC2 detected in M2270 affects exon 5 and a tolerant part of CYLC2 according to metadome 41.