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Abstract Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Entero-
bacterales pathogens, representing a major public health challenge. However, the extent of plasmid 
sharing and evolution between Enterobacterales causing human infections and other niches remains 
unclear, including the emergence of resistance plasmids. Dense, unselected sampling is essential to 
developing our understanding of plasmid epidemiology and designing appropriate interventions to 
limit the emergence and dissemination of plasmid-associated AMR. We established a geographically 
and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-
associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work 
(WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Entero-
bacterales. Isolates were collected between 2008 and 2020 from sites <60 km apart in Oxford-
shire, UK. Pangenome analysis of plasmid clusters revealed shared ‘backbones’, with phylogenies 
suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory 
functions, including AMR genes. Many plasmid ‘backbones’ were seen across species and niches, 
raising the possibility that plasmid movement between these followed by rapid accessory gene 
change could be relatively common. Overall, the signature of identical plasmid sharing is likely to 
be a highly transient one, implying that plasmid movement might be occurring at greater rates than 
previously estimated, raising a challenge for future genomic One Health studies.

Editor's evaluation
This study presents valuable findings on the dissemination of plasmids. The analysis, involving a 
geographically and temporally restricted collection of fully assembled genomes of 1458 isolates 
carrying in total of 3697 plasmids representing five major Enterobacterales genera, convincingly 
demonstrated that similar plasmids were shared between genera, species, and clones, within and 
between ecological niches. Given the size of the dataset and the very detailed level of analysis, this 
important study contributes to insights into the flow of plasmids, including those carrying antimicro-
bial resistance genes, across niches.
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Introduction
Enterobacterales are found both in human niches (e.g. hospital patients [Linh et al., 2021; Kraftova 
et al., 2021] and wastewater [Cahill et al., 2019]) and in non-human niches (e.g. livestock-associated 
[Subramanya et  al., 2021; AbuOun et  al., 2021] and waterways [Díaz-Gavidia et  al., 2021]). In 
recent decades, widespread carriage of antimicrobial resistance (AMR) genes has complicated the 
treatment of Enterobacterales infections (Buchy et al., 2020; Ruppé et al., 2020). The dissemination 
of AMR genes between Enterobacterales occurs in a ‘Russian-doll’-style hierarchy of nested, mobil-
isable genetic structures (Sheppard et al., 2016): genes not only move between bacterial hosts on 
mobilisable or conjugative plasmids but can also be transferred within and between plasmids and 
chromosomes by smaller mobile genetic elements (MGEs) such as insertion sequences (Che et al., 
2021; Shaw et al., 2021). Despite gene gain/loss events, many plasmids have been shown to have a 
persistent structure encoding replication and transfer machinery (Orlek et al., 2017b; Matlock et al., 
2021a).

Many plasmids can transfer between species and are seen across different niches (Redondo-
Salvo et al., 2020) but the extent to which they are shared between human and non-human niches 
remains poorly understood. Previous studies investigating this topic have often been limited in size 
given the genetic diversity in these niches (Mounsey et al., 2021), and/or restricted to single species 
(Ludden et al., 2019) or drug-resistant isolates (Shen et al., 2020), or are systematic studies, pooling 
geographically/temporally disparate samples (Cherak et  al., 2021; Bastidas-Caldes et  al., 2022). 
Further, fragmented genome assemblies in many cases make recovering complete plasmids, and 
other MGEs, impossible (Hilpert et al., 2021).

Instances of cross-niche transfer of plasmids are well described, but the frequency of such events is 
poorly characterised. There are multiple instances where AMR genes have emerged from non-human 
niches and subsequently become major clinical problems in human Enterobacterales infections, high-
lighting the relevance of inter-niche transfer in AMR gene dissemination (e.g. blaCTX-M, mcr-1 [Wang 
et al., 2018] and blaNDM-1 [Sekizuka et al., 2011]). In general, environmental bacteria are believed to 
be the original source of AMR genes that eventually become prevalent in clinical settings after transfer 
into clinical pathogens. However, we know little about natural rates of inter-niche transfer beyond 
these high-profile examples. It remains unclear how plasmids evolve within natural populations, 
meaning we understand little about the wider context in which AMR genes emerge and disseminate.

To explore Enterobacterales plasmid diversity and sharing across niches in a geographically and 
temporally restricted context, we studied hybrid assemblies (i.e. using both long and short reads) 
of large Enterobacterales isolate collections in Oxfordshire, UK, from (i) human bloodstream infec-
tions (BSIs; 2008–2018), (ii) livestock-associated sources (faeces from cattle, pigs, poultry, sheep; 
surrounding environmental soils; all 2017 except poultry 2019–2020), and (iii) wastewater treatment 
work (WwTW)-associated sources (influent, effluent, waterways upstream/downstream of effluent 
outlets; Oxfordshire, 2017).

Results
Our dataset of n=3697 plasmids from n=1458 isolates (Figure 1a, Table 1) contained bacteria from 
human BSIs (n=1880 plasmids from n=738 isolates), livestock-associated sources (cattle, pig, poultry, 
and sheep faeces, soils surrounding livestock farms; n=1155 plasmids from n=512 isolates), and from 
wastewater treatment works (WwTW)-associated sources (influent, effluent, waterways upstream/
downstream of effluent outlets; n=662 plasmids from n=208 isolates). All sampling sites were <60 km 
apart (Figure 1b) and timeframes overlapped (2008–2020; Figure 1c). Isolates had a median 2 plas-
mids (IQR = 1–4, range = 0–16). Major Enterobacterales genera represented included: n=1044 Esch-
erichia, n=212 Klebsiella, n=125 Citrobacter, and n=63 Enterobacter.

Sampling niche was strongly associated with isolate genus (Fisher’s test, p-value <0.001; Table 2). 
Klebsiella isolates were disproportionately derived from BSI versus other niches (22% [161/738] Klebsi-
ella from BSI versus 8% [51/669] from other niches). Citrobacter and Enterobacter were disproportion-
ately derived from WwTW-associated versus other niches (51% [107/208] Citrobacter and Enterobacter 
from WwTW versus 6% [81/1250] Citrobacter and Enterobacter from other niches). Chromosomal 
Mash trees (see Materials and methods) for the two most common species in the dataset, Escherichia 
coli (72% [1,044/1,458]; see Appendix  1—figure 1) and Klebsiella pneumoniae (11% [163/1458]; 
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Figure 1. A diverse sample of geographically and temporally restricted Enterobacterales. (a) Number of chromosomes and plasmids by niche, stratified 
by isolate genus. (b) Map of approximate, relative distances between sampling sites, coloured by niche (human bloodstream infection [BSI], livestock-
associated [cattle, pig, poultry, and sheep faeces, soils nearby livestock sites], and wastewater treatment work [WwTW]-associated sources [influent, 
effluent, waterways upstream/downstream of effluent outlets]). Number in circles indicates how many of the n=1458 isolates are from that location. (c) 
Sampling timeframe for BSI and REHAB (non-BSI) isolates.

Table 1. Isolate niche breakdown.

Niche Sample type(s) No. isolates No. plasmids

Bloodstream infections (BSIs)
Community, nosocomial, and other healthcare-
associated infections 738 1880

Livestock-associated

Cattle faeces 133 215

Sheep faeces 113 286

Pig faecesan 104 352

Poultry faeces 34 112

Soil surrounding livestock farms 128 190

Wastewater treatment work (WwTW)-associated

Influent 88 313

Upstream waterways 25 60

Effluent and downstream waterways 95 289

Total 1458 3697

https://doi.org/10.7554/eLife.85302
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Appendix 1—figure 2), demonstrated intermixing of human and non-human isolates within clades, 
consistent with species lineages not being structured by niche.

We contextualised our plasmids within known plasmid diversity using ‘plasmid taxonomic units’ 
(PTUs; using COPLA, see Materials and methods), designed to be equivalent to a plasmid ‘species’. 
We found 32% (1193/3697) of plasmids were unclassified, highlighting the substantial plasmid diversity 
within this geographically restricted dataset, whilst the remaining 68% (2,504/3,697) were assigned 
a PTU. In total, we found n=67 known PTUs, containing a median 9 plasmids (IQR = 4–30, range = 
1–556), with the largest PTU-FE (556/2,504), corresponding to F-type Escherichia plasmids.

Near-identical plasmid sharing observed between human and livestock-
associated Enterobacterales
We screened for near-identical plasmids shared across isolates by grouping those with a low Mash 
distance (d<0.0001) and highly similar lengths (longest plasmid ≤1% longer than shorter plasmids; 
note that this near-identical threshold becomes an identical threshold for extremely small plasmids; 
see Materials and methods). We found n=225 near-identical groups of ≥2 members, recruiting 19% 
(712/3697) plasmids. Bootstrapping accumulation curves for near-identical plasmid groups and single-
tons per the number of isolates (ACs; see Materials and methods), we revealed a highly ‘open’ accumu-
lation (Heap’s parameter γ=0.97, Appendix 1—figure 3), suggesting further isolate sampling would 
detect more unique plasmids approximately linearly. Restricted to BSI/livestock-associated isolates 
alone, we found similar curves for both niches (BSI γ=0.98, livestock-associated γ=0.94), suggesting 
they had similar levels of plasmid diversity.

The most common group size of near-identical plasmids were pairs, representing 71% (159/225) 
of groups (group size IQR = 2–3, range = 2–32). Plasmid members of near-identical groups repre-
sented multiple bacterial host STs (25% [56/225]), species (4% [9/225]), and genera (4% [9/225]), 
consistent with plasmids capable of inter-lineage/species/genus transfer. Further, 8% (17/225) of 
near-identical groups contained plasmids found across human BSIs and at least one other sampling 
niche (livestock-associated/WwTW-associated), suggesting inter-niche transfer (i.e. ‘cross-niche 
groups’; Figure  2a). Within cross-niche groups, n=3/17 contained plasmids from multiple bacte-
rial species (Figure 2b), and most consisted of conjugative plasmids (n=5/17 conjugative, n=9/17 
mobilisable, n=3/17 non-mobilisable; Figure 2c). AMR genes were carried by plasmids in n=6/17 
cross-niche groups (Figure 2d), with n=5/6 of these groups containing at least one beta-lactamase 
protein encoding gene.

Sharing between BSI and livestock-associated isolates was supported by 8/17 cross-niche groups 
(n=45 plasmids). Of these, n=3/8 groups contained BSI/sheep plasmids: one group contained mobilis-
able Col-type plasmids, the remaining two groups contained conjugative FIB-type plasmids, of which 
one group contained plasmids carrying the AMR genes aph(3'')-Ib, aph(6)-Id, blaTEM-1, dfrA5, sul2, 
and the other group contained plasmids carrying the MDR efflux pump protein robA (see Materials 
and methods). A further n=2/8 groups contained BSI/pig mobilisable Col-type plasmids, of which 
one group other carried the AMR genes aph(3'')-Ib, aph(6)-Id, dfrA14, and sul2. Lastly, n=1/8 groups 
contained BSI/poultry non-mobilisable Col-type plasmids, n=1/8 contained BSI/pig/poultry/influent 
non-mobilisable Col-type plasmids, and n=1/8 contained BSI/cattle/pig/poultry/influent mobilisable 
Col-type plasmids.

Table 2. Isolate genus breakdown.

Niche

Isolate genus

TotalCitrobacter Enterobacter Escherichia Klebsiella Other

Bloodstream infections (BSIs) 6 11 547 161 13 738

Livestock-associated 54 10 433 14 1 512

Wastewater treatment work 
(WwTW)-associated 65 42 64 37 0 208

Total 125 63 1044 212 14 1458

https://doi.org/10.7554/eLife.85302
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Figure 2. Cross-niche, near-identical plasmids. (a) Size of cross-niche, near-identical plasmid groups, coloured by niche (total n=84 plasmids). Median 
length (bp) of plasmids within groups increases from left to right. (b) Proportion of plasmid host species by group. (c) Predicted mobility of plasmid. 
(d) Antimicrobial resistance (AMR) gene carriage in plasmid. For small plasmids, the stringent distance threshold (d<0.0001) becomes an identical 
threshold, meaning that plasmids of the same length with a single SNP between them are grouped into different groups (e.g. the three groups with 

Figure 2 continued on next page
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Plasmid clustering reveals a diverse but intertwined population 
structure across niches
Near-identical plasmids shared across niches are a likely signature of recent transfer events, but we 
also wanted to examine the wider plasmid population structure. We therefore agnostically clustered 
all plasmids based on alignment-free sequence similarity (clusters were groups of n≥3 plasmids; see 
Materials and methods and Appendix 1—figures 4 and 5). We defined n=247 plasmid clusters with 
median 5 members (IQR = 3–10, range = 3–123) recruiting 71% (2627/3697) of the plasmids. The 
remainder were either singletons (i.e. single, unconnected plasmids; 19% [718/3697]) or doubletons 
(i.e. pairs of connected plasmids; 10% [352/3697]). By bootstrapping b=1000 ACs for plasmid clus-
ters, doubletons, and singletons found against number of isolates sampled (Appendix 1—figure 6; 
see Materials and methods), we estimated that the rarefaction curve had a Heap’s parameter γ=0.75, 
suggesting further isolate sampling would likely detect more plasmid diversity and clusters.

Of the plasmid clusters, n=69/247 (28%) had at least 10 members, representing 50% (1832/3697) 
of all plasmids (Figure  3a). 122/247 (49%) clusters contained BSI plasmids and plasmids from at 
least one other niche. This included 73/247 (30%) of clusters with both BSI and livestock-associated 
plasmids, representing n=38 unique plasmid replicon haplotypes (i.e. combinations of replication 
proteins) of which only 24% (9/38) were Col-type plasmids, which are often well conserved and carry 
few genes (Rozwandowicz et al., 2018). 72/247 (29%) of clusters contained both BSI and influent/
effluent/downstream plasmids, reflecting a route of Enterobacterales dissemination into waterways. In 
contrast, only 18/247 (7%) of clusters contained both BSI and upstream waterway plasmids, of which 
most (13/18 [72%]) also contained influent/effluent/downstream plasmids.

Overall, plasmid clusters scored high homogeneity (h) but low completeness (c) with respect to 
biological and ecological characteristics (non-putative PTUs [h=0.99, c=0.66]; replicon haplotype 
[h=0.92, c=0.69]; bacterial host sequence type (ST) [h=0.84, c=0.14] in Figure 3b; predicted mobility 
[h=0.93, c=0.20] in Figure 3c). This indicated that clustered plasmids often had similar characteristics, 
but the same characteristics were often observed in multiple clusters. When scoring plasmid clusters 
against broad sampling niche (BSI, livestock-associated, or WwTW-associated; Figure 3a), homoge-
neity was low (h=0.12, c=0.61), indicating mixed clusters. The imperfect homogeneity is to be antici-
pated as replicon haplotypes and mobilities can vary within plasmid families, and plasmid families can 
have diverse host ranges (Redondo-Salvo et al., 2020).

Plasmids carrying AMR genes were found in 21% (52/247) of the plasmid clusters (i.e. ‘antimi-
crobial resistance gene [ARG]-carrying clusters’), representing n=550 plasmids (Figure 3d). Of the 
ARG-carrying clusters, 92% (48/52) contained at least one beta-lactamase-carrying plasmid (n=437 
plasmids in total). AMR genes were present in a median 67% of ARG-carrying cluster members (IQR = 
28–100%, range = 3–100%). This highlights that AMR genes are not necessarily widespread on genet-
ically similar plasmids and can be potentially acquired multiple different times through the activity 
of smaller MGEs (e.g. transposons) or recombination. For example, cluster 12 was a group of n=42 
conjugative, PTU-FE plasmids found in BSI, wastewater, and waterways. Of these, 31% (13/42) carried 
the AMR gene blaTEM-1, and in a range of genetic contexts: n=9/13 blaTEM-1 genes were found within 
Tn3 and n=4/13 were carried without a transposase, of which n=2/4 were found with the additional 
AMR genes aph(6)-Id, aph(3’’)-Ib, and sul2. F-type plasmids were the most common AMR gene carriers 
(61% [337/550] of all ARG-carrying cluster plasmids), underlining the known role of F-type plasmids in 
AMR gene dissemination (Matlock et al., 2021a).

The beta-lactamase blaTEM-1 was the most common AMR gene detected (8% of total AMR gene 
annotations [424/5402]; see Materials and methods). In terms of sequence length (bp), plasmids made 
up 3.1% of the overall dataset but 13.8% of the blaTEM-1 -carrying proportion. Of the plasmid clusters, 
16% (39/247) carried blaTEM-1, and of these nine clusters were seen in human BSI and at least one 
other niche. Plasmid clusters either variably or always carrying blaTEM-1 were strongly associated with 
BSI (p<0.01, Chi-squared test X2=8.19, 33/161 of BSI clusters containing blaTEM-1 vs. 5/86 for non-BSI 

length = 1552 bp; see Materials and methods). From left to right, the near-identical groups are named in Supplementary file 3 as 156, 18, 117, 210, 22, 
29, 44, 19, 184, 6, 208, 139, 32, 26, 10, 192, 217.

Figure 2 continued
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Figure 3. Genetically similar plasmids shared between niches. (a) Size of plasmid clusters with at least 10 members, coloured by niche. Size of clusters 
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clusters) and carried a higher number of other AMR genes (p<0.01, Wilcoxon text of blaTEM-1-plasmid 
clusters vs. others; see Appendix 1—figure 7).

An intertwined ecology of plasmids across human and livestock-
associated niches
Plasmids can change their genetic content, particularly when subject to new selective pressures 
(Rodríguez-Beltrán et  al., 2021; Pesesky et  al., 2019). Many plasmids have a structure with a 
‘backbone’ of conserved core genes and a ‘cargo’ of variable accessory genes (Orlek et al., 2017b; 
Matlock et al., 2021a; Coluzzi et al., 2022). We wanted to explore evidence for cross-niche plasmids 
with minimal mutational evolution in a shared backbone (compatible with  approximately years of 
evolutionary separation) but variable accessory gene repertoires.

We first conducted a pangenome-style analysis (see Materials and methods) on the n=69/247 
plasmid clusters with at least 10 members. For each cluster, we determined ‘core’ (genes found in ≥95% 
of plasmids) and ‘accessory’ gene repertoires (found in <95% of plasmids). Within clusters, we found 
median 9 core genes (IQR = 4–53, range = 0–219), and median 9 accessory genes (IQR = 3–145, range 
= 0–801) (Figure 3e). Core genes comprised a median proportion 42.2% of the total pangenome sizes 
(IQR = 20.9–66.7%). At an individual plasmid level, core genes shared by a cluster comprised a median 
62.5% of each plasmid’s gene repertoire (IQR = 37.4–83.3%; Figure 3e). Putatively conjugative plas-
mids carried a significantly higher proportion of accessory genes in their repertoires than mobilisable/
non-mobilisable plasmids (Kruskal-Wallis test followed by Dunn’s test [H(2)=193.01, p-value <0.001] ).

Using multiple sequence alignments of the core genes within each cluster, we produced maximum 
likelihood phylogenies (see Supplementary file 1 and Materials and methods). For this step, we 
only considered the n=62/69 clusters where each plasmid had ≥1 core gene. With the n=27/62 clus-
ters that contained both BSI and livestock-associated plasmids, we measured the phylogenetic signal 
for plasmid sampling niche using Fritz and Purvis’ D (see Supplementary file 2 and Materials and 
methods). The analysis indicated that the evolutionary history of plasmid clusters is neither strictly 
segregated by sampling niche nor completely intermixed, but something intermediate.

Alongside the core-gene phylogenies, we generated gene repertoire heatmaps (example cluster 
2 in Figure 4a–b; all clusters and heatmaps in Supplementary file 1). By visualising the genes in a 
consensus synteny order (see Materials and methods), the putative backbone within each plasmid 
cluster is shown alongside its accessory gene and transposase repertoire. This highlights how plasmids 
might gain/lose accessory functions within a persistent backbone. Log-transformed linear regression 
revealed a significant relationship between Jaccard distance of accessory genes presence against 
core-gene cophenetic distance (y=0.080log(x)+0.978, R2=0.47, F(1,52988)=4.75e4, p-value <0.001; 
see Appendix 1—figure 8 and Materials and methods).

Plasmid dissemination between human and livestock-associated niches 
is not structured by bacterial host
Alongside vertical inheritance, conjugative and mobilisable plasmids are capable of inter-host transfer, 
crossing between bacterial lineages, species, up to phyla (Redondo-Salvo et al., 2020). Phylogenetic 
analysis can determine whether plasmid evolution between BSI and livestock-associated niches is 
driven by host clonal expansion or other means, as well as allow us to explore the early emergence of 
AMR gene carrying plasmids.

As a detailed example, we evaluated the largest plasmid cluster containing both human and 
livestock-associated plasmids (cluster 2, n=100 members). All plasmids carried at least one F-type 
replicon and were all putatively conjugative, with 75% (75/100) and 25% (25/100) assigned PTU-FE and 
a putative PTU, respectively. Further, 48% (48/100) plasmids carried blaTEM-1, and 51% (51/100) carried 
more than one AMR gene. All host chromosomes were E. coli except OX-BSI-481_2 (S. enterica ST 
2998; hereon omitted from the analysis). The n=99 E. coli isolates represented six phylogroups: A 
(5/99), B1 (18/99), B2 (52/99), C (14/99), D (7/99), and G (3/99; see Materials and methods).

Figure  4b–c shows the plasmid core-gene phylogeny (Tplasmid) and the E. coli host core-gene 
phylogeny (Tchromosome). The E. coli phylogeny was structured by six clades corresponding to the six 
phylogroups (see Materials and methods). We found low congruence between the plasmid core-gene 
phylogeny and the chromosomal core-gene phylogeny as seen in the central ‘tanglegram’ (i.e. lines 
connecting pairs of plasmid and chromosome tips from the same isolate). Additionally, we calculated 
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a Robinson-Foulds distance RF(Tplasmid, Tchromosome)=162, reflecting a high number of structural differ-
ences between the phylogenies (see Materials and methods). There was some evidence of plasmid 
structuring by niche (Fritz and Purvis’ D=0.24; see Materials and methods).

Within the plasmid phylogeny, there was a clade of n=44 plasmids (support 100%; circled in grey 
in Figure 4b) containing both BSI and livestock-associated plasmids, which were within median 4 
core-gene SNPs of each other (IQR = 2–8, range = 0–59). Estimating plasmid evolution at an approx-
imate rate of one SNP per year (see Materials and methods) would give a median time to most 
recent common ancestor of the backbone at approximately 4 years prior to sampling, consistent with 
recent movement between human and livestock-associated niches. This plasmid clade was mainly 
present in phylogroup B2 (20/44), but also A (3/44), B1 (9/44), C (8/44), and D (4/44), suggesting 
plasmid movement. Further, 77% (34/44) of plasmids within the clade carried blaTEM-1 (BSI: 25/34, 

Plasmid core gene phylogeny Chromosome core gene phylogenyPlasmid consensus gene synteny

No. nucleotide substitutions per site 0 0.01 0.02 0

a b c

0.020.04

d e f

Core blocks Accessory blocksPangraph

Block type

Figure 4. Cluster 2 plasmid and host evolution. (a) Consensus gene ordering for plasmid cluster 2, coloured by gene type (total n=99 plasmids; n=1 
Salmonella enterica isolate omitted). Genes are coloured by core, accessory, or transposase. (b) Plasmid core-gene phylogeny with tips coloured by 
sampling niche. The grey circle highlights the clade of n=44 plasmids which were further analysed. (c) Plasmid host chromosome core-gene phylogeny 
with tips coloured by sampling niche. Plasmid and host phylogeny tips are connected in a ‘tanglegram’ which connects pairs of plasmids and 
chromosomes from the same isolate. (d) Visualisation of the pangraph for n=44 plasmids in the grey-circled clade in (b). Blocks are coloured by presence 
in plasmids. (e) Core blocks (found in at least 95% of the n=44 plasmids). (f) Accessory blocks (found in less than 95% of the n=44 plasmids).
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livestock-associated: 8/34, WwTW-associated: 1/34), and 82% (36/44) carried ≥1 AMR gene, high-
lighting the role of plasmids in cross-niche dissemination of AMR.

To examine the evolution of entire plasmid sequences within the clade, we represented all n=44 
plasmids as a ‘pangraph’ (Figure 4d; see Materials and methods). Briefly, pangraph converts input 
sequences into a consensus graph, where each sequence is a path along a set of homologous 
sequence alignments, i.e., ‘blocks’, which in series form ‘pancontigs’. Filtering for ‘core blocks’ (i.e. 
those found in ≥95% plasmids), we found 4 pancontigs (40 blocks total), with the longest 98,269 bp 
(total length 125,369  bp), indicating a putative plasmid backbone (Figure  4e). Then, filtering for 
‘accessory blocks’ (i.e. those found in <95% plasmids), we found 18 pancontigs (39 blocks total), with 
median length 2380 bp (total length 63,753 bp), forming the accessory gene repertoire (Figure 4f). 
Core and accessory pancontigs contained 22% (57/261) and 78% (204/261) of gene annotations, 
respectively, of which over half encoded hypothetical proteins (51%; 134/261; see Supplementary file 
4 and Materials and methods). Core annotations included replication (repB) and conjugation (finO, 
traI, traM) proteins, whereas accessory gene annotations included AMR (bcr, blaTEM, tetA, tetR) 
and mercury resistance (merA, merC, merP, merT) proteins. Transposase/insertion sequence anno-
tations were disproportionately found in accessory pancontigs (88%; 38/43) versus core pancontigs 
(12%; 5/43). This points to a persistent plasmid backbone structure with loss/gain events at particular 
‘hotspots’ as well as rearrangements.

Discussion
Sharing of plasmids between different niches is normally focused on those carrying AMR genes that are 
of particular current clinical concern, such as extended-spectrum beta-lactamase (ESBL) or carbapene-
mase genes, meaning we lack information on the vast ‘denominator’ of background plasmid sharing, 
and on the dissemination of other AMR genes which are now widespread in clinical isolates and from 
which important insights might be gained. By analysing a dataset of n=3697 systematically collected 
Enterobacterales plasmids sampled from human BSI, livestock- and WwTW-associated sources in a 
geographically and temporally restricted context, we found evidence supporting significant plasmid 
dissemination across niches, putting those which carry AMR genes of current major clinical concern 
into context. We found 225 instances of shared, near-identical plasmid groups, 25% of which were 
found across multiple bacterial STs, 4% across multiple bacterial species, and 8% in both human BSI 
and ≥1 non-BSI niche. Beyond this near-identical sharing, we analysed ‘clusters’ of plasmids and found 
that 73/247 clusters contained plasmids seen in both human BSIs and other contexts. Approximately 
a fifth (52/247) of plasmid clusters contained plasmids carrying AMR genes (n=550 plasmids). Our 
results suggest the need for broad, unselected, and detailed sampling frames to fully understand 
plasmid diversity and evolution, and to evaluate the ‘One Health’ risk of AMR associated with plasmid 
sharing across niches.

Whilst many plasmid clusters were strongly structured by host phylogeny and isolate source, some 
plasmids from human BSIs were highly genetically related to those in other niches, including live-
stock. However, not all of these carried AMR genes. Our results highlight the potential routes for 
transfer that exist through similar plasmids. However, recovering these instances of putative sharing 
is a sampling challenge. Accumulation curve analyses suggested increasing the size of our dataset 
would have led to further near-identical matches at an approximately linear rate, meaning even a 
dataset of this size captures only a small fraction of the true extent of plasmid sharing between human 
clinical and other non-human/clinical niches. This presents a challenge for designing appropriately 
powered studies. Had we only sampled n=100 livestock-associated isolates (i.e. around 20% of our 
actual sample), there was only a 39% chance that we would have detected ≥5 matches with BSI plas-
mids (Appendix 1—figure 9).

Understanding the evolutionary history, distribution, and epidemiology of well-known genes in 
environmental plasmids may offer insights into the future trajectories of more recently emerged 
genes. For example, the first plasmid-encoded beta-lactamase to be described was blaTEM-1, identified 
in 1965 in an E. coli isolate in Greece (Datta and Kontomichalou, 1965) and now widely prevalent 
in Enterobacterales (Bush and Bradford, 2020). blaTEM-1 has a narrow spectrum of activity and is 
now less clinically concerning than newer genes which mediate broad-spectrum resistance, but in our 
dataset blaTEM-1 was strongly associated with plasmid clusters seen in BSI and with the carriage of other 
AMR genes. blaTEM-1 may continue to play an important role in the spread of AMR-carrying plasmids 
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which can transfer recently emerged genes, and similarities in its association with plasmids and other 
smaller transposable MGEs may reflect the future trajectory of other AMR genes of more recent clin-
ical concern such as ESBLs and carbapenemases.

Given that plasmids observed in BSI isolates represent small proportion of human Enterobacterales 
diversity, many more sharing events may occur in the human gut (Forster et al., 2019) which we only 
sampled incompletely using wastewater influent as a proxy. The human colon contains around 1014 
bacteria (Sender et  al., 2016), with large ranges of Enterobacteriaceae abundance. Further, even 
small numbers of across-niche sharing events, such as transfer events of important AMR genes from 
species-to-species or niche-to-niche, may have significant clinical implications, as has been seen with 
several important AMR genes globally. Future studies need to carefully consider the limitations of 
sampling frames in detecting any genetic overlap, given both substantial diversity and the effects of 
niches and geography (Shaw et al., 2021; Hanage, 2019).

By examining plasmid relatedness compared to bacterial host relatedness in E. coli, we demon-
strated that plasmids seen across different niches are not necessarily associated with clonal lineages. 
Using a pangenome-style analysis, we showed that plasmids can share sets of near-identical core 
genes alongside diverse accessory gene repertoires. While plasmids with more distantly related core 
genes tended to have dissimilar accessory gene content, plasmids with more closely related core 
genes shared a wide range of accessory gene content. This would be consistent with a hypothesis 
of persistent ‘backbone’ structures gaining and losing accessory functions as they move between 
hosts and niches. We suggest that this mode of transfer might be worth considering. Evolutionary 
models for plasmids which can accommodate well-conserved backbone evolution alongside acces-
sory structural changes and gain/loss events are urgently needed. Estimating plasmid evolutionary 
rates remains a challenge, with little known about appropriate values for mutation rates in plasmids, 
and even less for non-mutational processes such as gene gain/loss.

Our study had several limitations. Our non-BSI isolates were not as temporally varied as the 
BSI isolates, meaning we could not fully explore temporal evolution. Although we evaluated four 
bacterial genera, 72% (1044/1458) of our sequenced isolates were E. coli, and so our analyses 
and findings are particularly focused on this species. Additionally, we did not sample livestock-
associated niches densely enough to explore individual livestock types (cattle/pig/poultry/sheep) 
sharing plasmids with BSI isolates (see Appendix 1—figure 9). Isolate-based methodologies are 
limited in evaluating the true diversity of the niches sampled; composite approaches including 
metagenomics might shed additional insight in future studies. Further, the exact source of an 
isolate is poorly defined for wastewater/waterway isolates as they act as a confluence of multiple 
sources, although they represent important niches in their own right. We only analysed plasmids 
from complete genomes, i.e., where the chromosome and all plasmids were circularised, meaning 
we disregarded ~23% and ~33% of BSI and non-BSI assemblies, respectively. The exclusive use of 
complete assemblies was to ensure full plasmid sequences could be examined in their full genomic 
context. We only focused on plasmids as horizontally transmissible elements here; detailed study 
of other smaller MGEs across-niches would represent interesting future work. We have also investi-
gated a limited subset of Enterobacterales: plasmid sharing likely extends to other bacterial hosts 
not investigated here. Lastly, our isolate culture methods for livestock-associated samples may not 
have been as sensitive for the identification of Klebsiella spp. as for other Enterobacterales such 
as Escherichia, as we did not use enrichment and selective culture on Simmons citrate agar with 
inositol (Rodrigues et al., 2022). This may have limited our ability to study the epidemiology of 
livestock Klebsiella plasmids.

In conclusion, this study presents to our knowledge the largest evaluation of systematically 
collected Enterobacterales plasmids across human and non-human niches within a geographically and 
temporally restricted context. Near-identical plasmids can be found in different niches, pointing to 
putative dissemination, although this dynamic likely varies by plasmid cluster; the proportion of near-
identical plasmid groups that were found across niches was 8% (17/225) and influenced by sample 
size. We demonstrate a likely intertwined ecology of plasmids across human and non-human niches, 
where different plasmid clusters are variably but incompletely structured 1475 and putative ‘back-
bone’ plasmid structures can rapidly gain and lose accessory genes following cross-niche spread. 
Future ‘One Health’ studies require dense and unselected sampling, and complete/near-complete 
plasmid reconstruction, to appropriately understand plasmid epidemiology across niches.
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 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Matlock, Lipworth et al. eLife 2023;12:e85302. DOI: https://doi.org/10.7554/eLife.85302 � 12 of 31

Materials and methods
Livestock-associated isolates n=247 Enterobacterales isolates from farm-proximate soils and poultry 
faeces (n=19 farms; n=5 cattle, n=4 pig, n=5 poultry, n=5 sheep) were collected and sequenced for 
this study in 2017–2020. DNA extraction and sequencing was performed as in Shaw et al., 2021. 
Genomes were hybrid assemblies reconstructed using Unicycler (Wick et al., 2017) (v. 0.4.4; default 
hybrid assembly parameters except --min_component_size 500 --min_dead_end_size 500). 
Only complete assemblies (plasmids and chromosomes) were considered (n=162/247).

BSI isolates
Sequenced Human BSI Enterobacterales isolates from patients presenting to n=4 hospitals within 
Oxfordshire, UK, September 2008–December 2018, as described in Lipworth et al., 2021, were also 
included. Although all patients were sampled in Oxfordshire, a total of n=505/738 patients resided in 
Oxfordshire, n=133/738 in surrounding counties, and n=100/738 had location information omitted. 
Only complete assemblies (n=738/953 total assembled) were considered.

Other livestock-associated and WwTW-associated isolates
Enterobacterales isolates from faeces from the n=14 non-poultry farms and wastewater influent, 
effluent, and waterways upstream/downstream of effluent outlets surrounding n=5 WwTWs, across 
three seasonal timepoints in 2017 were included (as in Shaw et  al., 2021), were included. Only 
complete assemblies (n=558/827 total assembled) were considered.

Taxonomic assignment
Chromosome STs were determined with mlst, 2017 (v. 2.19.0; PubMLST database; Jolley and 
Maiden, 2010). For the n=11/1458 chromosomes which could not be typed with mlst, species were 
determined with the PubMLST ‘species ID’ web-tool (Jolley et al., 2018), for which all had a support = 
100, except for Lelliottia nimipressuralis (support = 83). Of these, n=5/11 were from BSI, n=4/11 from 
livestock, and n=2/11 from effluent/downstream of WwTWs. From the BSI isolates, we also included 
n=2 Aeromonas spp., a non-Enterobacterales genus from the wider Gammaproteobacteria class.

Chromosome trees
Trees for E. coli and K. pnemoniae chromosomes were produced using Mashtree (Katz et al., 2019) 
on ‘accurate’ mode (--mindepth 0 --numcpus 12).

PTU classification
Plasmids were assigned a PTU using COPLA (Redondo-Salvo et  al., 2021) (default parameters 
except -t circular, -k Bacteria, -p Pseudomonadota, -c Gammaproteobacteria, and -o Enterobacte-
rales) (Redondo-Salvo et al., 2020). COPLA compares query plasmids to a database of PTU reference 
plasmids, assigning a PTU when both (i) the ANI >0.7 along 50% of the length of the smallest plasmid 
in the comparison and (ii) a graph-neighbouring condition to existing PTU clusters is satisfied. The 
COPLA reference database contains over 10,000 curated, non-redundant plasmids retrieved from the 
84th NCBI RefSeq database in 2017 (Pruitt et al., 2007). We contextualised our plasmids within known 
plasmid diversity using COPLA to determine each plasmid’s ‘PTU’ (see Materials and methods), which 
is designed to be equivalent to a ‘species’ concept for plasmids (Redondo-Salvo et al., 2021). Briefly, 
COPLA classifies query plasmids based on average nucleotide identity (ANI) against a non-redundant 
reference plasmid database where most plasmids have been assigned to a reference PTU (Pruitt 
et al., 2007). Within our sample, 64% (2369/3697) plasmids were assigned a PTU and 4% (135/3,697) 
a putative PTU (i.e. the query plasmid was clustered with three unclassified reference plasmids). This 
is consistent with a previous COPLA analysis of 1000 Enterobacterales plasmids which found that 63% 
were classified into a PTU (Redondo-Salvo et al., 2021). The remaining 32% (1193/3697) of plasmids 
were unclassified (i.e. connected set with less than four plasmids) highlighting the previously unsam-
pled plasmid diversity within our dataset. In total, we found n=67 known PTUs, containing a median 9 
plasmids (IQR = 4–30, range = 1–556), where the largest assigned PTU (556/2504) was PTU-FE, corre-
sponding to F-type Escherichia plasmids (Matlock et al., 2021a; Rozwandowicz et al., 2018). The 
proportion of unclassified plasmids was higher in environmental/livestock samples (33%; 385/1155) 
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versus BSI samples (26%; 485/1880), emphasising the underrepresentation of non-human plasmids in 
reference plasmid databases.

Plasmid annotation
All plasmids were annotated with Prokka (Seemann, 2014) (v. 1.14.5) with default parameters. For 
replicon typing, Abricate (Seeman, 2015) (v. 1.0.0) was used with the PlasmidFinder (Carattoli et al., 
2014), ISfinder (Siguier et al., 2006), and BacMet (Pal et al., 2014) databases with default parame-
ters and output filtered for 80% minimum coverage. For annotating AMR genes, NCBI Antimicrobial 
Resistance Gene Finder (AMRFinderPlus) (Feldgarden et al., 2021) (v. 3.10.18) was used with default 
parameters. To assign putative plasmid mobilities, we used MOB-typer from MOB-suite (Robertson 
and Nash, 2018) (v. 3.03) with default parameters. MOB-typer predicts mobility based on annotations 
of relaxase (mob), mating pair formation (MPF) complex, and oriT genes. Briefly, a plasmid is puta-
tively labelled conjugative if it has both relaxase and MPF, mobilisable if it has either relaxase or oriT 
but no MPF, and non-mobilisable if it has no relaxase and oriT.

Near-identical plasmid screening
Groups of near-identical plasmids were detected as connected components in a plasmid-plasmid 
network with Mash distance (Ondov et al., 2016) (v. 2.3; default parameters except sketch size -s 
1000000) weighted edges, at a threshold d<0.0001. Briefly, Mash distance estimates an evolutionary 
distance on a reduced-length MinHash sketch of the sequences. Since Mash is a probabilistic estimate 
of evolutionary distance, we confirmed the probability of seeing any of our pairwise Mash distances in 
the near-identical groups by chance was 0. For whole genomes, Mash distance has a strong positive 
correlation with ANI (Figueras et al., 2014). We also required the shortest plasmid to be within 1% 
length (bp) of the longest plasmid, to account for assembly errors. Network analysis was performed 
using the igraph (Csardi and Nepusz, 2006) library (v. 1.2.7) in R.

The stringency of a k-mer-based distance threshold for near-identical plasmid clustering is equiva-

lent to a threshold on the Jaccard index (i.e. rearranging the Mash distance calculation (
‍
d = −1

k ln
(

2j
1+j

)
‍
) 

with d=10–4 and k=21 gives a Jaccard index threshold of j=0.9958). The effect of this threshold varies 
with plasmid size: at very small plasmid sizes, clusters contain only identical plasmids because the 
presence of a single SNP means plasmids are placed in different clusters. For example, two 1552 bp 
plasmids with a single SNP (e.g. RHB03-C05_6 and RHB02-C22_6) will have a Mash distance of d=5.0 
× 10–4 (>10–4 threshold). In contrast, at length = 150 kb a single SNP (not at the start/end of the 
plasmid) would lead to d=5.6 × 10–6 (<<10–4 threshold); even two 150 kbp plasmids with ~30 SNPs 
would have d≈2×10–4 (>10–4 threshold) and so be split into near-identical plasmids. Our analysis of 
plasmid sharing is therefore maximally conservative at small plasmid sizes but remains highly conser-
vative for large plasmids.

Accumulation and rarefaction curves
To generate an accumulation curve, isolates were sampled without replacement in a random order. 
For each isolate, the new plasmid diversity was recorded. For Appendix 1—figure 3, we recorded the 
number of new near-identical plasmid groups and singletons. For Appendix 1—figure 9, we recorded 
the number of near-identical matches with BSI plasmids from only environmental/livestock isolates. 
For Appendix 1—figure 6, we recorded the number of new clusters, doubletons, and singletons. 
A bootstrapped average of b=1000 accumulation curves was plotted for the rarefaction curve. The 
bootstraps were also used to estimate Heap’s parameter (γ) by fitting a linear regression to log-log 
transformed data using standard R libraries. For γ<0, it is possible to sample the entire diversity, and 
for 1>γ>0, the diversity will increase with every additional sample (Tettelin et al., 2008).

Plasmid similarity
Plasmid Jaccard index (JI) was calculated using Mash (Ondov et al., 2016) (v. 2.3; default parameters 
except sketch size -s 1000000). The JI, given by

	﻿‍
JI
A, B

 =
∣∣A ∪ B

∣∣∣∣A ∩ B
∣∣
‍�
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where A, B are the sets of k-mers of plasmids a, b, respectively. This measures extent of k-mer sharing 
between plasmids, range = 0–1, where 1 indicates an identical k-mer repertoire. Since the sketch size 
was larger than the plasmid lengths (except for one plasmid in the dataset, OX-ENV-67_2, which was 
larger than 1 Mbp at 1,310,597 bp and was not clustered; the next smallest was OX-WTW-80_2 at 
394,284 bp), the calculated Jaccard indices were almost always exact.

Plasmid network and clustering
The determination of the plasmid-plasmid network, threshold, and clusters could be achieved 
with several alternative methodologies. Plasmid networks have previously been constructed by 
full sequence alignments (Yamashita et  al., 2014), annotated genes (Branger et  al., 2018), and 
alignment-free Mash distances (Matlock et al., 2021a; Acman et al., 2020; Jesus et al., 2019). We 
chose to use the Jaccard index of entire plasmid 21-mer distributions to capture coding sequences, 
their immediate contexts (Matlock et al., 2021b; Arcilla et al., 2016), and intergenic regions (Zhi 
et al., 2015; Delihas, 2009), all of which have known importance to bacterial evolution. Further, our 
contained previously unsampled diversity as seen by the PTU analysis, and because reference-based 
classifications such as MOB and replicon typing schemes are known to be incongruent (Orlek et al., 
2017a) or unreliable: 16% (602/3697) of our plasmids had an unidentifiable replicon type, which is 
not uncommon (Rozwandowicz et al., 2018). The evolutionary histories of plasmids can incorporate 
multiple gain, loss, and rearrangement events in addition to mutations (Kizny Gordon et al., 2020), 
and as such, traditional measures of genetic relatedness (e.g. single nucleotide variant thresholds) 
used for genomic epidemiology of whole genomes are likely less appropriate here. These similarities 
formed the edge weights in a plasmid-plasmid network, which was subsequently thresholded to spar-
sify the network and allow the detection of clusters.

Network thresholding to some extent depends subjectively on the dataset, with trade-offs between 
successfully revealing the underlying structure of plasmid relationships without excessively separating 
relatives. We chose a data-driven threshold as adopted by Branger et al., 2018, for their plasmid 
network, which examined the evolution of connected components within the network. This ensured 
the threshold was chosen where the regime of connected component evolution approximately stabi-
lises, minimising excessive network breakup. The threshold was chosen at JI = 0.5, meaning that 
edges between plasmids with JI <0.5 were deleted from the network. From this threshold onwards, 
both the number of connected components and the number of singletons steadily increased at a 
similar rate (Appendix  1—figure 4). This regime indicates an approximately stable non-singleton 
structure from JI = 0.5 onwards.

We defined plasmid clusters as groups of n≥3 plasmids with high within-cluster similarities and 
low between-cluster similarities. Plasmid clusters were detected using the Louvain algorithm which 
optimises the network modularity by iterative expectation maximisation (Blondel et al., 2008). This 
aims to maximise the density of edges within clusters against edges between clusters. Though non-
deterministic, the Louvain algorithm showed low variation in cluster distribution over 50 runs, consis-
tent with reproducible segregation of plasmids in clusters (range of clusters detected: 245–247; 
Appendix 1—figure 5). The algorithm was implemented using the Python-Louvain (v. 0.16) Python 
module. Although the algorithm is non-deterministic, multiple runs demonstrated minimal variation 
at our chosen network threshold. Overall, these approaches add to the growing literature describing 
suitable methodologies for clustering plasmids.

Near-identical plasmid groups were also included in the wider cluster analysis, as many were cross-
compartmental and found across bacterial hosts (see earlier, Figure 2). Of the n=194/225 groups 
which were clustered, 100% (194/194) had all members fall within the same plasmid cluster, with 
n=30/247 clusters containing multiple near-identical plasmid groups. Only 6% (14/247) of plasmid 
clusters comprised exclusively near-identical plasmid groups, suggesting that near-identical groups 
of plasmids often have nearby genetically related plasmids. Examining the entire PTU distribution 
within clusters, most contained at least one unclassified plasmid (51%; 127/247) or plasmid assigned 
a putative PTU (9%; 23/247). However, many clusters exclusively contained just one known PTU (42%; 
105/247).

Cluster homogeneity and completeness
Homogeneity (h) and completeness (c) are dual conditional entropy-based measures, independent 
of cluster and metadata label distributions (Rosenberg and Hirschberg, 2007). A clustering satisfies 
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homogeneity (h=1) if all cluster members have the same metadata label type. Consider a network 
with ‍N ‍ nodes, partitioned by a set of metadata labels, ‍M =

{
mi|i = 1, . . . , n

}
‍, and a set of communi-

ties, ‍C =
{

cj|j = 1, . . . , m
}
‍. Let ‍A =

{
aij
}
‍ represent the ijth entry in the contingency table of partitions. 

Hence, ‍aij‍ counts the number of nodes with label ‍mi‍ in community ‍cj‍ . We then say

	﻿‍

h=




1 if H(M, C) = 0

1 − H(M|C)
H(M)

else
‍�

where

	﻿‍
H(M|C) = −

|C|∑
c=1

|M|∑
m=1

amc
N

log amc∑|M|
c=1 amc ‍�

and

	﻿‍
H(M) = −

|M|∑
m=1

∑|C|
c=1 amc

n
log

∑|C|
c=1 amc

n ‍�

are the conditional entropy of the metadata given the clusters and the entropy of the clusters, respec-
tively ‍H

(
M|C

)
= 0‍ when the cluster partition coincides with the metadata partition, and no new infor-

mation is added. A cluster partition satisfies completeness (c=1) if all instances of a metadata label 
type are assigned the same cluster. Completeness is defined dually by

	﻿‍

c=




1 if H(C, M) = 0

1 − H(C|M)
H(C)

else
‍�

The measures were calculated using the clver library (v. 0.1.1) in R.

Cluster pangenome analysis
Cluster pangenomes were generated using Panaroo (Tonkin-Hill et al., 2020) (v. 1.2.9) with parameters 
default except --clean-mode sensitive --aligner mafft -a core --core_threshold 
0.95. For core-gene alignments, the threshold was set at minimum 95% presence amongst clus-
tered plasmids, whereby they were aligned using MAFFT (Katoh and Standley, 2013) (v. 7.407) with 
default parameters. An identical approach was taken for the host chromosome phylogeny in Figure 4. 
The median length of plasmids within a cluster was positively correlated with number of core genes 
(R=0.85, t=13.4, p-value <2.2e-16) and total pangenome size (R=0.87, t=14.6, p-value <2.2e-16).

Plasmid core-gene phylogenies
Maximum likelihood core-gene phylogenies were generated using IQ-Tree (Minh et  al., 2020) (v. 
2.0.6) with parameters -m GTR +F + I + G4 -keep-ident -T 2 -B 1000. The substitution 
model used was general time reversible (GTR) using empirical base frequencies form the alignment 
(F), allowing for invariable sites (I) and variable rates of substitution (G4). We used n=1000 ultra-
fast bootstraps (B 1000; see Minh et al., 2013) to visually inspect larger clades for support. Briefly, 
95% support approximates a 95% probability that the clade is genuine. Only the n=62/69 clusters 
(excluding 6, 8, 26,2 9,3 2, 40, and 65) where every plasmid carried at least 1 core gene were analysed. 
Phylogenies were primarily plotted using the R library ggtree (Yu et al., 2017).

Fritz and Purvis’ D
Fritz and Purvis’ D measures phylogenetic signal for binary traits (Fritz and Purvis, 2010). First, 
we calculate the character state changes required to observe our phylogeny (dobs). To account for 
phylogeny size and prevalence, dobs is standardised under the two null models: (i) tip labels are random 
permuted (dr), and (ii) tip labels are distributed under the expectation of a Brownian motion model of 
evolution (db). Then, we define

	﻿‍ D = (dobs − db)/(dr − db).‍�

https://doi.org/10.7554/eLife.85302
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Hence, for D≈1, dobs follows dr more closely, and for D≈0, dobs follows db more closely. We calculated 
dobs n=10,000 times and averaged the result, as well as calculate p-values for significant deviation from 
dr or db. D was implemented using the R library caper (Orme, 2013). Fritz and Purvis’ D is normally 
used for cross-species analysis so is not benchmarked for plasmids. Results for phylogenies with less 
than 25 tips should be viewed more conservatively due to reduced statistical power in these instances.

We considered the binary ‘trait’ of human or livestock-associated isolate and estimated D 
with n=10,000 permutations. We found 42% (11/26) clusters had D>0.5 (see Supplementary file 
2). However, only 23% (6/26) of phylogenies were significantly different (p-value <0.05) from the 
conserved null model, compared to 50% (13/26) significantly different from the random null model.

Consensus gene synteny heatmaps
For each cluster, we first generated a list of every possible pair of genes in the pangenome. Then 
for each plasmid, we counted the distance between these pairs, modulo the number of genes in the 
plasmid. If a gene was absent in a plasmid, NA was used. We then calculated the median of these 
values across all plasmids in the cluster. We then built a dendrogram from a hierarchical clustering of 
the median distances. The order of the tip labels in the dendrogram were then used as the ‘consensus 
gene synteny’.

Accessory gene distances
Plasmid accessory gene distances were calculated using pairwise Jaccard distances on gene presence-
absences matrices. For plotting the cluster-wise plasmid core-gene cophenetic distance against acces-
sory gene presence-absence Jaccard distance, only the n=26/62 clusters with at least 50 accessory 
genes were plotted. The log-transformed linear regression of Jaccard distance of accessory genes 
presence against core-gene cophenetic distance was fitted in R with standard libraries.

Chromosome core-gene phylogeny
An identical approach was taken to the plasmid phylogenies. E. coli phylogroups were typed using 
EzClermont (Waters et al., 2020) (v. 0.7.0) with default parameters. Robinson-Foulds distance was 
calculated using the R library phangorn (Schliep, 2011).

Plasmid mutation rate
Mutation rates per base pair in microbes typically arise from DNA replication and tend to be below 
m=10–9 per site per generation (Drake, 1991) or perhaps as low as 10–10 per site per generation 
(Foster et al., 2015; Wielgoss et al., 2013). For a plasmid of size L, one therefore expects L × m 
mutations per plasmid per generation. For example, if the plasmid has L=105 then in each generation 
1 in 10,000 plasmids will gain a mutation. The generation time of E. coli per day in the human gut 
has been estimated to be between 6 and 20 generations per day (Ghalayini et al., 2018). For large 
plasmids that exist at a copy number of ~1, the plasmid generation time is the cell generation time. 
More generally, for a plasmid copy number p the number of replications of the plasmid expected for a 
given number of cell generations g will be p × g (assuming that plasmid copies are simply and linearly 
related to the realised number of replications per cell). A crude estimate for the expected mutation 
rate per time period for a plasmid is therefore given by L × m × p × g. For a plasmid of L=100 kbp and 
P=1, assuming m=[0.1–1] ×10–9 per site per generation and g=[6–20]×365 per year, one would expect 
it to accumulate ~0.5 mutations a year (between ~0.02 and 0.7 depending on assumptions). One 
obtains the same result for L=10 kbp and P=10. There is a strong inverse correlation between plasmid 
size and copy number. This suggests that a suitable upper bound for the expected number of muta-
tions for a typical plasmid per year (under neutral evolution) is of the order of magnitude of 1 SNP a 
year. This rough ‘SNPs and years’ rule-of-thumb appears consistent with known empirical results. For 
example: 100 kbp I1-type Shigella plasmids isolated between 2007 and 2010 in Vietnam were sepa-
rated by at most 2 SNPs (Holt et al., 2013); 30 kbp X4-type plasmids carrying mcr-1 isolated between 
2016 and 2018 in China were separated by most 4 SNPs (Shen et al., 2020) (analysis not shown); 63.5 
kbp pOXA48-like plasmids (n=202) in K. pneumoniae collected across Europe between 2013 and 
2014 as part of EUSCAPE were overwhelmingly within 2 SNPs of each other (176/202) (David et al., 
2020); the same was true of 45.4 kbp IncX3 plasmids (n=135) from the EUSCAPE dataset (all were 
within 6 SNPs of each other; see Figure 4 of that paper); and also of 113.4 kbp pKpQIL-like plasmids 

https://doi.org/10.7554/eLife.85302
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(n=91) from the EUSCAPE dataset – although a minority of these plasmids were separated by up to 20 
SNPs, which seems suggestive of either ancestry before the 2-year sampling frame or recombination.

Pangraph analysis
We used pangraph (Noll et al., 2022) (v. 0.5.0) to build a pangraph of the clade within plasmid cluster 
2, using the --circular flag and otherwise default parameters. We removed duplicated blocks 
from the pangraph. We used pangraph export (--edge-minimum-length 0, default parameters) to 
export the graph to GFA format and then visualised this using Bandage (Wick et al., 2015). Supple-
mentary file 4 used Prokka annotations (see above) of the core and accessory pancontigs.

Data visualisation
Plots were primally produced using the R library ggplot2 (Gómez-Rubio, 2017), with additional 
graphics in BioRender (Munday, 2021).
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Appendix 1—figure 1. Mash tree for n=1044 E. coli chromosomes. Tree tips are coloured by sampling 
compartment, scale is Mash distance.
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Appendix 1—figure 2. Mash tree for n=163 K. pneumoniae chromosomes. Tree tips are coloured by sampling 
compartment, scale is Mash distance.
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Appendix 1—figure 3. Accumulation curves of near-identical plasmid groups and singletons against isolate 
sample size. Black lines represent b=1000 bootstrap simulations, the red line represents their average.
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Appendix 1—figure 4. Network evolution of largest connected component, number of connected components, 
and number of singletons, as edges are removed at increasing JI thresholds. The vertical red line represents the 
chosen threshold of JI=0.5.
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Appendix 1—figure 5. Number of clusters detected within the plasmid network at increasing JI thresholds. 
Interval bars represent the IQR in cluster number at a given threshold over 50 runs of the Louvain algorithm.
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Appendix 1—figure 6. Accumulation curves of plasmid clusters, doubletons, and singletons against isolate 
sample size. Black lines represent b=1000 bootstrap simulations, red line represents their average.
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Appendix 1—figure 7. Plasmid clusters containing blaTEM-1 carry more AMR genes. Each point is one plasmid 
cluster. n=247 clusters are shown, with panels facetted by the number of niches the plasmid cluster represented. 
p-values are from the Wilcoxon test.
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Appendix 1—figure 8. Plasmid accessory gene presence/absence Jaccard distance against core-gene cophenetic 
distance. Presented are data points from 27/247 clusters for which (i) all plasmids had at least 1 core gene, and (ii) 
the cluster contained at least 50 accessory genes. The red line is a statistically significant (p-value <2.2e-16) log-
transformed linear regression.
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Appendix 1—figure 9. Accumulation curves of near-identical plasmid matches with bloodstream infection (BSI) 
plasmids and singletons against livestock-associated (environmental soils/livestock) isolate sample size. Black lines 
represent b=1000 bootstrap simulations, red line represents their average.
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