Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin  Is a corresponding author
  1. AstraZeneca, United Kingdom
  2. University of Liverpool, United Kingdom
  3. Janssen, Belgium
  4. Quadram Institute, United Kingdom

Abstract

The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.

Data availability

The current manuscript is a computational study. No data have been generated for this manuscript. Modelling code is uploaded as Source Code.zip file

Article and author information

Author details

  1. Louis Gall

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Louis Gall, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1805-2357
  2. Carrie Duckworth

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ferran Jardi

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Ferran Jardi, Employee of Johnson & Johnson..
  4. Lieve Lammens

    Preclinical Sciences and Translational Safety, Janssen, Beerse, Belgium
    Competing interests
    Lieve Lammens, Employee and shareholder of Johnson & Johnson..
  5. Aimee Parker

    Gut Microbes and Health Programme, Quadram Institute, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ambra Bianco

    Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Ambra Bianco, Employee and shareholder of AstraZeneca Plc.
  7. Holly Kimko

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    Holly Kimko, Employee and shareholder of AstraZeneca Plc.
  8. David Mark Pritchard

    Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7971-3561
  9. Carmen Pin

    Clinical and Quantitative Pharmacology, AstraZeneca, Cambridge, United Kingdom
    For correspondence
    carmen.pin@astrazeneca.com
    Competing interests
    Carmen Pin, Employee and shareholder of AstraZeneca Plc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8734-6167

Funding

European Federation of Pharmaceutical Industries and Associations (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

Horizon 2020 Framework Programme (Innovative Medicines Initiative 2,No. 116030)

  • Louis Gall
  • Carrie Duckworth
  • Ferran Jardi
  • Lieve Lammens
  • David Mark Pritchard
  • Carmen Pin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in an Association for Assessment and Accreditation of Laboratory Animal Care approved rodent facility and in accordance with the applicable animal welfare guidelines and legislation. Experimental procedures were approved by the institutional ethics committee. Ten-week-old male C57/BL6Y mice were obtained from Charles River (France). Mice were housed in polysulfon cages with corncob bedding under standard conditions of room temperature (21{degree sign}C {plus minus} 2), relative humidity (55% {plus minus} 15) and a 12-h light cycle. Water and a certified rodent pelleted maintenance diet were supplied ad libitum. Nest material and rodent retreats were provided for environmental enrichment.

Reviewing Editor

  1. Mariana Gómez-Schiavon, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: December 9, 2022
  2. Accepted: December 7, 2023
  3. Accepted Manuscript published: December 8, 2023 (version 1)

Copyright

© 2023, Gall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Gall
  2. Carrie Duckworth
  3. Ferran Jardi
  4. Lieve Lammens
  5. Aimee Parker
  6. Ambra Bianco
  7. Holly Kimko
  8. David Mark Pritchard
  9. Carmen Pin
(2023)
Homeostasis, injury and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt
eLife 12:e85478.
https://doi.org/10.7554/eLife.85478

Further reading

    1. Computational and Systems Biology
    Zeyneb Kurt, Jenny Cheng ... Xia Yang
    Research Article

    Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Vanessa Dumeaux, Samira Massahi ... Michael T Hallett
    Research Article Updated

    Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.